
© Copyright 1016, Basement Supercomputing, All rights Reserved.

Spark (and Hadoop)

•  Developed in 2009 in UC
Berkeley’s AMPLab by
Matei Zaharia.

•  It was Open Sourced in 2010
under a BSD license.

•  It was donated to Apache
software foundation in 2013

•  Similar to Hadoop MapReduce,
but is independent project

© Copyright 1016, Basement Supercomputing, All rights Reserved.

What is So Special About Spark?
•  Speed − Spark keeps intermediate results in memory. Many

analytics jobs consist of stages, traditional MapReduce writes
results to disk between stages. Spark stores the intermediate
processing data in memory.

•  Supports Multiple Languages − Spark provides built-in
APIs in Java, Scala, or Python. Therefore, you can write
applications in different languages. Spark includes 80 high-
level operators for interactive querying.

•  Advanced Analytics − Spark not only supports “Map” and
“Reduce.” It also supports SQL queries, Streaming data,
Machine learning (ML), and Graph algorithms. It is higher
level than native MapReduce, it can be used in place of Hive
and/or Pig

© Copyright 1016, Basement Supercomputing, All rights Reserved.

Spark Deployment

© Copyright 1016, Basement Supercomputing, All rights Reserved.

Components of Spark

© Copyright 1016, Basement Supercomputing, All rights Reserved.

Spark Components
•  Apache Spark Core - Spark Core is the underlying general

execution engine for spark
•  Spark SQL - Spark SQL is a component on top of Spark Core

that introduces a new data abstraction called SchemaRDD,
which provides support for structured and semi-structured
data.

•  Spark Streaming - Spark Streaming leverages Spark Core's
fast scheduling capability to perform streaming analytics.

•  MLlib (Machine Learning Library) - MLlib is a distributed
machine learning framework

•  GraphX - GraphX is a distributed graph-processing
framework on top of Spark. It provides an API for expressing
graph computation.

© Copyright 1016, Basement Supercomputing, All rights Reserved.

Spark RDDs

•  Resilient Distributed Datasets (RDD) is a
fundamental data structure of Spark.

•  It is an immutable distributed collection of objects.
•  Each dataset in RDD is divided into logical

partitions, which may be computed on different
nodes of the cluster.

•  RDDs can contain any type of Python, Java, or
Scala objects, including user-defined classes.

© Copyright 1016, Basement Supercomputing, All rights Reserved.

Spark Operations: Transformations and Actions

•  RDD Transformations return a pointer to new
RDD . The original RDD cannot be changed. Spark
is lazy, so nothing will be executed unless a
transformation or action is called.

An RDD transformation is not a set of data, but is a
step in a program (might be the only step) telling
Spark how to get data and what to do with it.

•  RDD Actions return values (e.g. collect, count,
take, save-as).

© Copyright 1016, Basement Supercomputing, All rights Reserved.

Spark RDD vs. Data Frame
•  An RDD is blind structure partitioned across the nodes

of the cluster and provides many transformation
methods, such as map(), filter(), and reduce(). Each of
these methods results in a new RDD representing the
transformed data.

•  The DataFrame introduces the concept of a schema to
describe the data (named columns), allowing Spark to
manage and optimize computation across nodes.
Conceptually equivalent to a table in a relational
database or a R/Python Dataframe.

•  Think of a DataFrame as a distributed database table
and an RDD as distributed raw data. (new: DataSets)

© Copyright 1016, Basement Supercomputing, All rights Reserved.

Iterative Operations Using Traditional
MapReduce (Batch Mode)

© Copyright 1016, Basement Supercomputing, All rights Reserved.

Iterative Operations Using Spark RDD

© Copyright 1016, Basement Supercomputing, All rights Reserved.

In Reality, However

•  Hadoop MapReduce has been optimized using Tez
(keeps tuples in memory) Pig and Hive SQL have
become more interactive (like Spark) and less like
batch jobs.

•  Spark uses “in memory” computing, but if it runs
out of memory then intermediate results will spill
to disk. And if the job does not fit in memory, then
it is back to Hadoop MapReduce.

© Copyright 1016, Basement Supercomputing, All rights Reserved.

Spark Code Example (Pi estimation)

from pyspark import SparkContext!
from numpy import random!
n=5000000!
!
def sample(p):!
 x, y = random.random(), random.random()!
 return 1 if x*x + y*y < 1 else 0!
!
count = sc.parallelize(xrange(0,n)).map(sample) \  
.reduce(lambda a, b: a + b)!
!
print "Pi is roughly %f" % (4.0 * count / n)!

© Copyright 1016, Basement Supercomputing, All rights Reserved.

MapReduce Java Pi Estimation
•  /**!
•  * Mapper class for Pi estimation. /**!
•  * Mapper class for Pi estimation.!
•  * Generate points in a unit square!
•  * and then count points inside/outside of the inscribed circle of the square.!
•  */!
•  public static class QmcMapper extends !
•  Mapper<LongWritable, LongWritable, BooleanWritable, LongWritable> {!

•  /** Map method.!
•  * @param offset samples starting from the (offset+1)th sample.!
•  * @param size the number of samples for this map!
•  * @param context output {ture->numInside, false->numOutside}!
•  */!
•  public void map(LongWritable offset,!
•  LongWritable size,!
•  Context context) !
•  throws IOException, InterruptedException {!

•  final HaltonSequence haltonsequence = new HaltonSequence(offset.get());!
•  long numInside = 0L;!
•  long numOutside = 0L;!

•  for(long i = 0; i < size.get();) {!
•  //generate points in a unit square!
•  final double[] point = haltonsequence.nextPoint();!

•  //count points inside/outside of the inscribed circle of the square!
•  final double x = point[0] - 0.5;!
•  final double y = point[1] - 0.5;!
•  if (x*x + y*y > 0.25) {!
•  numOutside++;!
•  } else {!
•  numInside++;!
•  }!

•  //report status!
•  i++;!
•  if (i % 1000 == 0) {!
•  context.setStatus("Generated " + i + " samples.");!
•  }!
•  }!

•  //output map results!
•  context.write(new BooleanWritable(true), new LongWritable(numInside));!
•  context.write(new BooleanWritable(false), new LongWritable(numOutside));!
•  }!
•  }!

•  /**!
•  * Reducer class for Pi estimation.!
•  * Accumulate points inside/outside results from the mappers.!
•  */!
•  public static class QmcReducer extends !
•  Reducer<BooleanWritable, LongWritable, WritableComparable<?>, Writable> {!
•  !
•  private long numInside = 0;!
•  !

•  /**!
•  * Reduce task done, write output to a file.!
•  */!
•  @Override!
•  public void cleanup(Context context) throws IOException {!
•  //write output to a file!
•  Path outDir = new Path(TMP_DIR, "out");!
•  Path outFile = new Path(outDir, "reduce-out");!
•  Configuration conf = context.getConfiguration();!
•  FileSystem fileSys = FileSystem.get(conf);!
•  SequenceFile.Writer writer = SequenceFile.createWriter(fileSys, conf,!
•  outFile, LongWritable.class, LongWritable.class, !
•  CompressionType.NONE);!
•  writer.append(new LongWritable(numInside), new LongWritable(numOutside));!
•  writer.close();!
•  }!
•  }!
•  * Generate points in a unit square!
•  * and then count points inside/outside of the inscribed circle of the square.!
•  */!
•  public static class QmcMapper extends !
•  Mapper<LongWritable, LongWritable, BooleanWritable, LongWritable> {!

•  /** Map method.!
•  * @param offset samples starting from the (offset+1)th sample.!
•  * @param size the number of samples for this map!
•  * @param context output {ture->numInside, false->numOutside}!
•  */!
•  public void map(LongWritable offset,!
•  LongWritable size,!
•  Context context) !
•  throws IOException, InterruptedException {!

•  final HaltonSequence haltonsequence = new HaltonSequence(offset.get());!
•  long numInside = 0L;!
•  long numOutside = 0L;!

•  for(long i = 0; i < size.get();) {!
•  //generate points in a unit square!
•  final double[] point = haltonsequence.nextPoint();!

•  //count points inside/outside of the inscribed circle of the square!
•  final double x = point[0] - 0.5;!
•  final double y = point[1] - 0.5;!
•  if (x*x + y*y > 0.25) {!
•  numOutside++;!
•  } else {!
•  numInside++;!

•  ...!

